This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| upgr1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| upgr1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) | ||
| upgr1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) | ||
| upgr1wlkd.j | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) | ||
| Assertion | upgr1wlkdlem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | upgr1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | upgr1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 4 | upgr1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 5 | upgr1wlkd.j | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) | |
| 6 | ssid | ⊢ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } | |
| 7 | sseq2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |
| 10 | 5 9 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |