This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1wlkd.p | |- P = <" X Y "> |
|
| upgr1wlkd.f | |- F = <" J "> |
||
| upgr1wlkd.x | |- ( ph -> X e. ( Vtx ` G ) ) |
||
| upgr1wlkd.y | |- ( ph -> Y e. ( Vtx ` G ) ) |
||
| upgr1wlkd.j | |- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } ) |
||
| Assertion | upgr1wlkdlem1 | |- ( ( ph /\ X = Y ) -> ( ( iEdg ` G ) ` J ) = { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.p | |- P = <" X Y "> |
|
| 2 | upgr1wlkd.f | |- F = <" J "> |
|
| 3 | upgr1wlkd.x | |- ( ph -> X e. ( Vtx ` G ) ) |
|
| 4 | upgr1wlkd.y | |- ( ph -> Y e. ( Vtx ` G ) ) |
|
| 5 | upgr1wlkd.j | |- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } ) |
|
| 6 | preq2 | |- ( Y = X -> { X , Y } = { X , X } ) |
|
| 7 | 6 | eqeq2d | |- ( Y = X -> ( ( ( iEdg ` G ) ` J ) = { X , Y } <-> ( ( iEdg ` G ) ` J ) = { X , X } ) ) |
| 8 | 7 | eqcoms | |- ( X = Y -> ( ( ( iEdg ` G ) ` J ) = { X , Y } <-> ( ( iEdg ` G ) ` J ) = { X , X } ) ) |
| 9 | simpl | |- ( ( ( ( iEdg ` G ) ` J ) = { X , X } /\ ph ) -> ( ( iEdg ` G ) ` J ) = { X , X } ) |
|
| 10 | dfsn2 | |- { X } = { X , X } |
|
| 11 | 9 10 | eqtr4di | |- ( ( ( ( iEdg ` G ) ` J ) = { X , X } /\ ph ) -> ( ( iEdg ` G ) ` J ) = { X } ) |
| 12 | 11 | ex | |- ( ( ( iEdg ` G ) ` J ) = { X , X } -> ( ph -> ( ( iEdg ` G ) ` J ) = { X } ) ) |
| 13 | 8 12 | biimtrdi | |- ( X = Y -> ( ( ( iEdg ` G ) ` J ) = { X , Y } -> ( ph -> ( ( iEdg ` G ) ` J ) = { X } ) ) ) |
| 14 | 13 | com13 | |- ( ph -> ( ( ( iEdg ` G ) ` J ) = { X , Y } -> ( X = Y -> ( ( iEdg ` G ) ` J ) = { X } ) ) ) |
| 15 | 5 14 | mpd | |- ( ph -> ( X = Y -> ( ( iEdg ` G ) ` J ) = { X } ) ) |
| 16 | 15 | imp | |- ( ( ph /\ X = Y ) -> ( ( iEdg ` G ) ` J ) = { X } ) |