This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | untangtr | ⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr | ⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) | |
| 2 | ssralv | ⊢ ( ∪ 𝐴 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) |
| 4 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 5 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 6 | 4 5 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 7 | 6 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 8 | 7 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ) |
| 9 | untuni | ⊢ ( ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) |
| 11 | 3 10 | imbitrdi | ⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |
| 12 | untelirr | ⊢ ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ) |
| 14 | 11 13 | impbid1 | ⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |