This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton ( uniintsn ). (Contributed by NM, 30-Oct-2010) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unissint | |- ( U. A C_ |^| A <-> ( A = (/) \/ U. A = |^| A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( U. A C_ |^| A /\ -. A = (/) ) -> U. A C_ |^| A ) |
|
| 2 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 3 | intssuni | |- ( A =/= (/) -> |^| A C_ U. A ) |
|
| 4 | 2 3 | sylbir | |- ( -. A = (/) -> |^| A C_ U. A ) |
| 5 | 4 | adantl | |- ( ( U. A C_ |^| A /\ -. A = (/) ) -> |^| A C_ U. A ) |
| 6 | 1 5 | eqssd | |- ( ( U. A C_ |^| A /\ -. A = (/) ) -> U. A = |^| A ) |
| 7 | 6 | ex | |- ( U. A C_ |^| A -> ( -. A = (/) -> U. A = |^| A ) ) |
| 8 | 7 | orrd | |- ( U. A C_ |^| A -> ( A = (/) \/ U. A = |^| A ) ) |
| 9 | ssv | |- U. A C_ _V |
|
| 10 | int0 | |- |^| (/) = _V |
|
| 11 | 9 10 | sseqtrri | |- U. A C_ |^| (/) |
| 12 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 13 | 11 12 | sseqtrrid | |- ( A = (/) -> U. A C_ |^| A ) |
| 14 | eqimss | |- ( U. A = |^| A -> U. A C_ |^| A ) |
|
| 15 | 13 14 | jaoi | |- ( ( A = (/) \/ U. A = |^| A ) -> U. A C_ |^| A ) |
| 16 | 8 15 | impbii | |- ( U. A C_ |^| A <-> ( A = (/) \/ U. A = |^| A ) ) |