This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020) (Revised by AV, 6-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrvtxedgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| uhgrvtxedgiedgb.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | uhgrvtxedgiedgb | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrvtxedgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | uhgrvtxedgiedgb.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 5 | 1 | rneqi | ⊢ ran 𝐼 = ran ( iEdg ‘ 𝐺 ) |
| 6 | 4 2 5 | 3eqtr4g | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 = ran 𝐼 ) |
| 7 | 6 | rexeqdv | ⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ) ) |
| 8 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 9 | 8 | funfnd | ⊢ ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 ) |
| 10 | eleq2 | ⊢ ( 𝑒 = ( 𝐼 ‘ 𝑖 ) → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 11 | 10 | rexrn | ⊢ ( 𝐼 Fn dom 𝐼 → ( ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 13 | 7 12 | bitrd | ⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 15 | 14 | bicomd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |