This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspanop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspanop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | uhgrspanop | ⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspanop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | opex | ⊢ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ V | |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ V ) |
| 5 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 6 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 7 | 6 | resex | ⊢ ( 𝐸 ↾ 𝐴 ) ∈ V |
| 8 | 5 7 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = 𝑉 |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = 𝑉 ) |
| 10 | 5 7 | opiedgfvi | ⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = ( 𝐸 ↾ 𝐴 ) |
| 11 | 10 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = ( 𝐸 ↾ 𝐴 ) ) |
| 12 | id | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph ) | |
| 13 | 1 2 4 9 11 12 | uhgrspan | ⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ UHGraph ) |