This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspanop.v | |- V = ( Vtx ` G ) |
|
| uhgrspanop.e | |- E = ( iEdg ` G ) |
||
| Assertion | uhgrspanop | |- ( G e. UHGraph -> <. V , ( E |` A ) >. e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrspanop.e | |- E = ( iEdg ` G ) |
|
| 3 | opex | |- <. V , ( E |` A ) >. e. _V |
|
| 4 | 3 | a1i | |- ( G e. UHGraph -> <. V , ( E |` A ) >. e. _V ) |
| 5 | 1 | fvexi | |- V e. _V |
| 6 | 2 | fvexi | |- E e. _V |
| 7 | 6 | resex | |- ( E |` A ) e. _V |
| 8 | 5 7 | opvtxfvi | |- ( Vtx ` <. V , ( E |` A ) >. ) = V |
| 9 | 8 | a1i | |- ( G e. UHGraph -> ( Vtx ` <. V , ( E |` A ) >. ) = V ) |
| 10 | 5 7 | opiedgfvi | |- ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) |
| 11 | 10 | a1i | |- ( G e. UHGraph -> ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) ) |
| 12 | id | |- ( G e. UHGraph -> G e. UHGraph ) |
|
| 13 | 1 2 4 9 11 12 | uhgrspan | |- ( G e. UHGraph -> <. V , ( E |` A ) >. e. UHGraph ) |