This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | ||
| uhgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | ||
| Assertion | uhgrspan | ⊢ ( 𝜑 → 𝑆 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 4 | uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 5 | uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | |
| 6 | uhgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 7 | 1 2 3 4 5 6 | uhgrspansubgr | ⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) |
| 8 | subuhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UHGraph ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( 𝜑 → 𝑆 ∈ UHGraph ) |