This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A spanning subgraph S of a hypergraph G is a hypergraph.
(Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
uhgrspan.v |
|
|
|
uhgrspan.e |
|
|
|
uhgrspan.s |
|
|
|
uhgrspan.q |
|
|
|
uhgrspan.r |
|
|
|
uhgrspan.g |
|
|
Assertion |
uhgrspan |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrspan.v |
|
| 2 |
|
uhgrspan.e |
|
| 3 |
|
uhgrspan.s |
|
| 4 |
|
uhgrspan.q |
|
| 5 |
|
uhgrspan.r |
|
| 6 |
|
uhgrspan.g |
|
| 7 |
1 2 3 4 5 6
|
uhgrspansubgr |
|
| 8 |
|
subuhgr |
|
| 9 |
6 7 8
|
syl2anc |
|