This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected hypergraphs
uhgrfun
Metamath Proof Explorer
Description: The edge function of an undirected hypergraph is a function.
(Contributed by Alexander van der Vekens , 26-Dec-2017) (Revised by AV , 15-Dec-2020)
Ref
Expression
Hypothesis
uhgrfun.e
⊢ E = iEdg ⁡ G
Assertion
uhgrfun
⊢ G ∈ UHGraph → Fun ⁡ E
Proof
Step
Hyp
Ref
Expression
1
uhgrfun.e
⊢ E = iEdg ⁡ G
2
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
3
2 1
uhgrf
⊢ G ∈ UHGraph → E : dom ⁡ E ⟶ 𝒫 Vtx ⁡ G ∖ ∅
4
3
ffund
⊢ G ∈ UHGraph → Fun ⁡ E