This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrf.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgreq12g.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| uhgreq12g.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| Assertion | uhgreq12g | ⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrf.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgreq12g.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 4 | uhgreq12g.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | 1 2 | isuhgr | ⊢ ( 𝐺 ∈ 𝑋 → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 8 | simpr | ⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → 𝐸 = 𝐹 ) | |
| 9 | 8 | dmeqd | ⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → dom 𝐸 = dom 𝐹 ) |
| 10 | pweq | ⊢ ( 𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊 ) | |
| 11 | 10 | difeq1d | ⊢ ( 𝑉 = 𝑊 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 𝑊 ∖ { ∅ } ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 𝑊 ∖ { ∅ } ) ) |
| 13 | 8 9 12 | feq123d | ⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
| 14 | 3 4 | isuhgr | ⊢ ( 𝐻 ∈ 𝑌 → ( 𝐻 ∈ UHGraph ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐻 ∈ UHGraph ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
| 16 | 15 | bicomd | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ↔ 𝐻 ∈ UHGraph ) ) |
| 17 | 13 16 | sylan9bbr | ⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐻 ∈ UHGraph ) ) |
| 18 | 7 17 | bitrd | ⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph ) ) |