This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrf.v | |- V = ( Vtx ` G ) |
|
| uhgrf.e | |- E = ( iEdg ` G ) |
||
| uhgreq12g.w | |- W = ( Vtx ` H ) |
||
| uhgreq12g.f | |- F = ( iEdg ` H ) |
||
| Assertion | uhgreq12g | |- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( G e. UHGraph <-> H e. UHGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrf.e | |- E = ( iEdg ` G ) |
|
| 3 | uhgreq12g.w | |- W = ( Vtx ` H ) |
|
| 4 | uhgreq12g.f | |- F = ( iEdg ` H ) |
|
| 5 | 1 2 | isuhgr | |- ( G e. X -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
| 6 | 5 | adantr | |- ( ( G e. X /\ H e. Y ) -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
| 7 | 6 | adantr | |- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
| 8 | simpr | |- ( ( V = W /\ E = F ) -> E = F ) |
|
| 9 | 8 | dmeqd | |- ( ( V = W /\ E = F ) -> dom E = dom F ) |
| 10 | pweq | |- ( V = W -> ~P V = ~P W ) |
|
| 11 | 10 | difeq1d | |- ( V = W -> ( ~P V \ { (/) } ) = ( ~P W \ { (/) } ) ) |
| 12 | 11 | adantr | |- ( ( V = W /\ E = F ) -> ( ~P V \ { (/) } ) = ( ~P W \ { (/) } ) ) |
| 13 | 8 9 12 | feq123d | |- ( ( V = W /\ E = F ) -> ( E : dom E --> ( ~P V \ { (/) } ) <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
| 14 | 3 4 | isuhgr | |- ( H e. Y -> ( H e. UHGraph <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
| 15 | 14 | adantl | |- ( ( G e. X /\ H e. Y ) -> ( H e. UHGraph <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
| 16 | 15 | bicomd | |- ( ( G e. X /\ H e. Y ) -> ( F : dom F --> ( ~P W \ { (/) } ) <-> H e. UHGraph ) ) |
| 17 | 13 16 | sylan9bbr | |- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( E : dom E --> ( ~P V \ { (/) } ) <-> H e. UHGraph ) ) |
| 18 | 7 17 | bitrd | |- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( G e. UHGraph <-> H e. UHGraph ) ) |