This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reformulate the G function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnprima.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| ucnprima.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
||
| ucnprima.3 | |- ( ph -> F e. ( U uCn V ) ) |
||
| ucnprima.4 | |- ( ph -> W e. V ) |
||
| ucnprima.5 | |- G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
||
| Assertion | ucnimalem | |- G = ( p e. ( X X. X ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| 2 | ucnprima.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
|
| 3 | ucnprima.3 | |- ( ph -> F e. ( U uCn V ) ) |
|
| 4 | ucnprima.4 | |- ( ph -> W e. V ) |
|
| 5 | ucnprima.5 | |- G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
|
| 6 | vex | |- x e. _V |
|
| 7 | vex | |- y e. _V |
|
| 8 | 6 7 | op1std | |- ( p = <. x , y >. -> ( 1st ` p ) = x ) |
| 9 | 8 | fveq2d | |- ( p = <. x , y >. -> ( F ` ( 1st ` p ) ) = ( F ` x ) ) |
| 10 | 6 7 | op2ndd | |- ( p = <. x , y >. -> ( 2nd ` p ) = y ) |
| 11 | 10 | fveq2d | |- ( p = <. x , y >. -> ( F ` ( 2nd ` p ) ) = ( F ` y ) ) |
| 12 | 9 11 | opeq12d | |- ( p = <. x , y >. -> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. = <. ( F ` x ) , ( F ` y ) >. ) |
| 13 | 12 | mpompt | |- ( p e. ( X X. X ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
| 14 | 5 13 | eqtr4i | |- G = ( p e. ( X X. X ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) |