This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All nonempty subclasses of a class having a well-ordered set-like relation R have R-minimal elements. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz6.26i.1 | ⊢ 𝑅 We 𝐴 | |
| tz6.26i.2 | ⊢ 𝑅 Se 𝐴 | ||
| Assertion | tz6.26i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz6.26i.1 | ⊢ 𝑅 We 𝐴 | |
| 2 | tz6.26i.2 | ⊢ 𝑅 Se 𝐴 | |
| 3 | tz6.26 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) | |
| 4 | 1 2 3 | mpanl12 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |