This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All nonempty subclasses of a class having a well-ordered set-like relation R have R-minimal elements. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz6.26i.1 | |- R We A |
|
| tz6.26i.2 | |- R Se A |
||
| Assertion | tz6.26i | |- ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz6.26i.1 | |- R We A |
|
| 2 | tz6.26i.2 | |- R Se A |
|
| 3 | tz6.26 | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
|
| 4 | 1 2 3 | mpanl12 | |- ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |