This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskint | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ A =/= (/) ) -> |^| A e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ A =/= (/) ) -> T e. Tarski ) |
|
| 2 | tskuni | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> U. A e. T ) |
|
| 3 | 2 | 3expa | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T ) -> U. A e. T ) |
| 4 | 3 | 3adant3 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ A =/= (/) ) -> U. A e. T ) |
| 5 | intssuni | |- ( A =/= (/) -> |^| A C_ U. A ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ A =/= (/) ) -> |^| A C_ U. A ) |
| 7 | tskss | |- ( ( T e. Tarski /\ U. A e. T /\ |^| A C_ U. A ) -> |^| A e. T ) |
|
| 8 | 1 4 6 7 | syl3anc | |- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ A =/= (/) ) -> |^| A e. T ) |