This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The most interesting case of the composition of two Cartesian products. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpcogend.1 | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) | |
| Assertion | xpcogend | ⊢ ( 𝜑 → ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcogend.1 | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) | |
| 2 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 3 | brxp | ⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) | |
| 4 | 3 | biancomi | ⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) |
| 5 | 2 4 | anbi12i | ⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 7 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 9 | 19.42v | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 10 | 6 8 9 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 11 | ndisj | ⊢ ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 12 | 1 11 | sylib | ⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 13 | 12 | biantrud | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 14 | 10 13 | bitr4id | ⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ) ) |
| 15 | 14 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } ) |
| 16 | df-co | ⊢ ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } | |
| 17 | df-xp | ⊢ ( 𝐴 × 𝐷 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } | |
| 18 | 15 16 17 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐷 ) ) |