This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017) (Revised by AV, 7-Jan-2021) (Proof shortened by AV, 15-Jan-2021) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trlsonfval.v | |- V = ( Vtx ` G ) |
|
| Assertion | trlsonfval | |- ( ( A e. V /\ B e. V ) -> ( A ( TrailsOn ` G ) B ) = { <. f , p >. | ( f ( A ( WalksOn ` G ) B ) p /\ f ( Trails ` G ) p ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsonfval.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 1vgrex | |- ( A e. V -> G e. _V ) |
| 3 | 2 | adantr | |- ( ( A e. V /\ B e. V ) -> G e. _V ) |
| 4 | simpl | |- ( ( A e. V /\ B e. V ) -> A e. V ) |
|
| 5 | 4 1 | eleqtrdi | |- ( ( A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) |
| 6 | simpr | |- ( ( A e. V /\ B e. V ) -> B e. V ) |
|
| 7 | 6 1 | eleqtrdi | |- ( ( A e. V /\ B e. V ) -> B e. ( Vtx ` G ) ) |
| 8 | df-trlson | |- TrailsOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( WalksOn ` g ) b ) p /\ f ( Trails ` g ) p ) } ) ) |
|
| 9 | 3 5 7 8 | mptmpoopabovd | |- ( ( A e. V /\ B e. V ) -> ( A ( TrailsOn ` G ) B ) = { <. f , p >. | ( f ( A ( WalksOn ` G ) B ) p /\ f ( Trails ` G ) p ) } ) |