This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpspropd.1 | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
|
| tpspropd.2 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
||
| Assertion | tpspropd | |- ( ph -> ( K e. TopSp <-> L e. TopSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpspropd.1 | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
|
| 2 | tpspropd.2 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
|
| 3 | 1 | fveq2d | |- ( ph -> ( TopOn ` ( Base ` K ) ) = ( TopOn ` ( Base ` L ) ) ) |
| 4 | 2 3 | eleq12d | |- ( ph -> ( ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) <-> ( TopOpen ` L ) e. ( TopOn ` ( Base ` L ) ) ) ) |
| 5 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 6 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 7 | 5 6 | istps | |- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 8 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 9 | eqid | |- ( TopOpen ` L ) = ( TopOpen ` L ) |
|
| 10 | 8 9 | istps | |- ( L e. TopSp <-> ( TopOpen ` L ) e. ( TopOn ` ( Base ` L ) ) ) |
| 11 | 4 7 10 | 3bitr4g | |- ( ph -> ( K e. TopSp <-> L e. TopSp ) ) |