This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf1o2 | |- ( Rel A -> ( F : A -1-1-onto-> B -> tpos F : `' A -1-1-onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposf12 | |- ( Rel A -> ( F : A -1-1-> B -> tpos F : `' A -1-1-> B ) ) |
|
| 2 | tposfo2 | |- ( Rel A -> ( F : A -onto-> B -> tpos F : `' A -onto-> B ) ) |
|
| 3 | 1 2 | anim12d | |- ( Rel A -> ( ( F : A -1-1-> B /\ F : A -onto-> B ) -> ( tpos F : `' A -1-1-> B /\ tpos F : `' A -onto-> B ) ) ) |
| 4 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 5 | df-f1o | |- ( tpos F : `' A -1-1-onto-> B <-> ( tpos F : `' A -1-1-> B /\ tpos F : `' A -onto-> B ) ) |
|
| 6 | 3 4 5 | 3imtr4g | |- ( Rel A -> ( F : A -1-1-onto-> B -> tpos F : `' A -1-1-onto-> B ) ) |