This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngvsca.2 | ⊢ · = ( ·𝑠 ‘ 𝐺 ) | ||
| Assertion | tngvsca | ⊢ ( 𝑁 ∈ 𝑉 → · = ( ·𝑠 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngvsca.2 | ⊢ · = ( ·𝑠 ‘ 𝐺 ) | |
| 3 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 4 | slotstnscsi | ⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | |
| 5 | 4 | simp2i | ⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 6 | 5 | necomi | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 7 | slotsdnscsi | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | |
| 8 | 7 | simp2i | ⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 9 | 8 | necomi | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 10 | 1 3 6 9 | tnglem | ⊢ ( 𝑁 ∈ 𝑉 → ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑇 ) ) |
| 11 | 2 10 | eqtrid | ⊢ ( 𝑁 ∈ 𝑉 → · = ( ·𝑠 ‘ 𝑇 ) ) |