This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The slots Scalar , .s and .i are different from the slot TopSet . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slotstnscsi | ⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re | ⊢ 5 ∈ ℝ | |
| 2 | 5lt9 | ⊢ 5 < 9 | |
| 3 | 1 2 | gtneii | ⊢ 9 ≠ 5 |
| 4 | tsetndx | ⊢ ( TopSet ‘ ndx ) = 9 | |
| 5 | scandx | ⊢ ( Scalar ‘ ndx ) = 5 | |
| 6 | 4 5 | neeq12i | ⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 9 ≠ 5 ) |
| 7 | 3 6 | mpbir | ⊢ ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
| 8 | 6re | ⊢ 6 ∈ ℝ | |
| 9 | 6lt9 | ⊢ 6 < 9 | |
| 10 | 8 9 | gtneii | ⊢ 9 ≠ 6 |
| 11 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
| 12 | 4 11 | neeq12i | ⊢ ( ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 9 ≠ 6 ) |
| 13 | 10 12 | mpbir | ⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 14 | 8re | ⊢ 8 ∈ ℝ | |
| 15 | 8lt9 | ⊢ 8 < 9 | |
| 16 | 14 15 | gtneii | ⊢ 9 ≠ 8 |
| 17 | ipndx | ⊢ ( ·𝑖 ‘ ndx ) = 8 | |
| 18 | 4 17 | neeq12i | ⊢ ( ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 9 ≠ 8 ) |
| 19 | 16 18 | mpbir | ⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 20 | 7 13 19 | 3pm3.2i | ⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |