This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| termcid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| termcid.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | termcid2 | ⊢ ( 𝜑 → 𝐹 = ( 1 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termcid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | termcid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 7 | termcid.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 8 | 1 2 3 4 5 6 7 | termcid | ⊢ ( 𝜑 → 𝐹 = ( 1 ‘ 𝑋 ) ) |
| 9 | 1 2 3 4 | termcbasmo | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( 1 ‘ 𝑌 ) ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝜑 → 𝐹 = ( 1 ‘ 𝑌 ) ) |