This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph ). (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tcph | ⊢ toℂPreHil = ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctcph | ⊢ toℂPreHil | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑤 |
| 4 | ctng | ⊢ toNrmGrp | |
| 5 | vx | ⊢ 𝑥 | |
| 6 | cbs | ⊢ Base | |
| 7 | 3 6 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 8 | csqrt | ⊢ √ | |
| 9 | 5 | cv | ⊢ 𝑥 |
| 10 | cip | ⊢ ·𝑖 | |
| 11 | 3 10 | cfv | ⊢ ( ·𝑖 ‘ 𝑤 ) |
| 12 | 9 9 11 | co | ⊢ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) |
| 13 | 12 8 | cfv | ⊢ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) |
| 14 | 5 7 13 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
| 15 | 3 14 4 | co | ⊢ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 16 | 1 2 15 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |
| 17 | 0 16 | wceq | ⊢ toℂPreHil = ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |