This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two distinct points in a T_1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t1sep | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpr3 | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ≠ 𝐵 ) | |
| 3 | 1 | t1sep2 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| 5 | 4 | necon3ad | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ≠ 𝐵 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 6 | 2 5 | mpd | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) |
| 7 | rexanali | ⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜 ) ) |