This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A T_1 space is R_0. That is, the Kolmogorov quotient of a T_1 space is also T_1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | t1r0 | ⊢ ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1t0 | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) | |
| 2 | kqhmph | ⊢ ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ Fre → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |
| 4 | t1hmph | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) ) | |
| 5 | 3 4 | mpcom | ⊢ ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) |