This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two distinct points in a T_0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t0dist | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑜 ∈ 𝐽 ¬ ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | t0sep | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| 3 | 2 | necon3ad | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ≠ 𝐵 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| 4 | 3 | exp32 | ⊢ ( 𝐽 ∈ Kol2 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ≠ 𝐵 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) ) ) |
| 5 | 4 | 3imp2 | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) |
| 6 | rexnal | ⊢ ( ∃ 𝑜 ∈ 𝐽 ¬ ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑜 ∈ 𝐽 ¬ ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) |