This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two topologically indistinguishable points in a T_0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t0sep | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ist0 | ⊢ ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐽 ∈ Kol2 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) |
| 4 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 5 | 4 | bibi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
| 7 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ) ) |
| 9 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) | |
| 10 | 9 | bibi2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
| 12 | eqeq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) ) |
| 14 | 8 13 | rspc2va | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 15 | 14 | ancoms | ⊢ ( ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 16 | 3 15 | sylan | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |