This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two distinct points in a T_0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | |- X = U. J |
|
| Assertion | t0dist | |- ( ( J e. Kol2 /\ ( A e. X /\ B e. X /\ A =/= B ) ) -> E. o e. J -. ( A e. o <-> B e. o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | |- X = U. J |
|
| 2 | 1 | t0sep | |- ( ( J e. Kol2 /\ ( A e. X /\ B e. X ) ) -> ( A. o e. J ( A e. o <-> B e. o ) -> A = B ) ) |
| 3 | 2 | necon3ad | |- ( ( J e. Kol2 /\ ( A e. X /\ B e. X ) ) -> ( A =/= B -> -. A. o e. J ( A e. o <-> B e. o ) ) ) |
| 4 | 3 | exp32 | |- ( J e. Kol2 -> ( A e. X -> ( B e. X -> ( A =/= B -> -. A. o e. J ( A e. o <-> B e. o ) ) ) ) ) |
| 5 | 4 | 3imp2 | |- ( ( J e. Kol2 /\ ( A e. X /\ B e. X /\ A =/= B ) ) -> -. A. o e. J ( A e. o <-> B e. o ) ) |
| 6 | rexnal | |- ( E. o e. J -. ( A e. o <-> B e. o ) <-> -. A. o e. J ( A e. o <-> B e. o ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( J e. Kol2 /\ ( A e. X /\ B e. X /\ A =/= B ) ) -> E. o e. J -. ( A e. o <-> B e. o ) ) |