This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdfv0 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ( 0 ... 𝐿 ) ) | |
| 2 | 1 | 3anim2i | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 3 | fzonnsub | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 𝐿 − 𝐹 ) ∈ ℕ ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝐿 − 𝐹 ) ∈ ℕ ) |
| 5 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↔ ( 𝐿 − 𝐹 ) ∈ ℕ ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
| 7 | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ ( 0 + 𝐹 ) ) ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ ( 0 + 𝐹 ) ) ) |
| 9 | elfzoelz | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ℤ ) | |
| 10 | 9 | zcnd | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ℂ ) |
| 11 | 10 | addlidd | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 0 + 𝐹 ) = 𝐹 ) |
| 12 | 11 | fveq2d | ⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 𝑆 ‘ ( 0 + 𝐹 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ ( 0 + 𝐹 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
| 14 | 8 13 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ 𝐹 ) ) |