This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subword of a word is a function from a half-open range of nonnegative integers of the same length as the subword to the set of symbols for the original word. (Contributed by AV, 13-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdf | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( 𝑁 − 𝑀 ) ) ⟶ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ) | |
| 2 | wrdf | ⊢ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) |
| 5 | swrdlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) | |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) = ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 7 | 6 | feq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ↔ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( 𝑁 − 𝑀 ) ) ⟶ 𝑉 ) ) |
| 8 | 4 7 | mpbid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( 𝑁 − 𝑀 ) ) ⟶ 𝑉 ) |