This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subofld | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ oField ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ Field ) | |
| 2 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → 𝐹 ∈ oRing ) |
| 5 | isfld | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Field ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ DivRing ∧ ( 𝐹 ↾s 𝐴 ) ∈ CRing ) ) | |
| 6 | 5 | simprbi | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Field → ( 𝐹 ↾s 𝐴 ) ∈ CRing ) |
| 7 | crngring | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ CRing → ( 𝐹 ↾s 𝐴 ) ∈ Ring ) | |
| 8 | 1 6 7 | 3syl | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ Ring ) |
| 9 | suborng | ⊢ ( ( 𝐹 ∈ oRing ∧ ( 𝐹 ↾s 𝐴 ) ∈ Ring ) → ( 𝐹 ↾s 𝐴 ) ∈ oRing ) | |
| 10 | 4 8 9 | syl2anc | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ oRing ) |
| 11 | isofld | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ oField ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ Field ∧ ( 𝐹 ↾s 𝐴 ) ∈ oRing ) ) | |
| 12 | 1 10 11 | sylanbrc | ⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ oField ) |