This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sub4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) − ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) − ( 𝐵 − 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) | |
| 2 | 1 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐷 ) − ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) ) |
| 4 | subadd4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) − ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐵 + 𝐶 ) ) ) | |
| 5 | subadd4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐶 ) − ( 𝐵 − 𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) ) | |
| 6 | 5 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐶 ) − ( 𝐵 − 𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) − ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) − ( 𝐵 − 𝐷 ) ) ) |