This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | basvtxval.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| basvtxval.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) | ||
| edgfiedgval.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | ||
| edgfiedgval.f | ⊢ ( 𝜑 → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) | ||
| Assertion | edgfiedgval | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basvtxval.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 2 | basvtxval.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) | |
| 3 | edgfiedgval.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | |
| 4 | edgfiedgval.f | ⊢ ( 𝜑 → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) | |
| 5 | structn0fun | ⊢ ( 𝐺 Struct 𝑋 → Fun ( 𝐺 ∖ { ∅ } ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → Fun ( 𝐺 ∖ { ∅ } ) ) |
| 7 | funiedgdmge2val | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) | |
| 8 | 6 2 7 | syl2anc | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
| 9 | edgfid | ⊢ .ef = Slot ( .ef ‘ ndx ) | |
| 10 | structex | ⊢ ( 𝐺 Struct 𝑋 → 𝐺 ∈ V ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 12 | structfung | ⊢ ( 𝐺 Struct 𝑋 → Fun ◡ ◡ 𝐺 ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → Fun ◡ ◡ 𝐺 ) |
| 14 | 9 11 13 4 3 | strfv2d | ⊢ ( 𝜑 → 𝐸 = ( .ef ‘ 𝐺 ) ) |
| 15 | 8 14 | eqtr4d | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 ) |