This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssref.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| ssref.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | ssref | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 Ref 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssref.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | ssref.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | eqcom | ⊢ ( 𝑋 = 𝑌 ↔ 𝑌 = 𝑋 ) | |
| 4 | 3 | biimpi | ⊢ ( 𝑋 = 𝑌 → 𝑌 = 𝑋 ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝑌 = 𝑋 ) |
| 6 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| 7 | 6 | 3ad2antl2 | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 8 | ssid | ⊢ 𝑥 ⊆ 𝑥 | |
| 9 | sseq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥 ) ) | |
| 10 | 9 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 11 | 7 8 10 | sylancl | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 13 | 1 2 | isref | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 15 | 5 12 14 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 Ref 𝐵 ) |