This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sspm and others. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspmlem.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspmlem.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| sspmlem.1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | ||
| sspmlem.2 | ⊢ ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 ) | ||
| sspmlem.3 | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ 𝑆 ) | ||
| Assertion | sspmlem | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspmlem.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspmlem.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 3 | sspmlem.1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 4 | sspmlem.2 | ⊢ ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 ) | |
| 5 | sspmlem.3 | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ 𝑆 ) | |
| 6 | ovres | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 8 | 3 7 | eqtr4d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
| 9 | 8 | ralrimivva | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
| 10 | eqid | ⊢ ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) | |
| 11 | 9 10 | jctil | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) |
| 12 | 2 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 13 | ffn | ⊢ ( 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 → 𝐹 Fn ( 𝑌 × 𝑌 ) ) | |
| 14 | 12 4 13 | 3syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 Fn ( 𝑌 × 𝑌 ) ) |
| 15 | 5 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 17 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 18 | 17 1 2 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 19 | xpss12 | ⊢ ( ( 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) | |
| 20 | 18 18 19 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 21 | fnssres | ⊢ ( ( 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ∧ ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) | |
| 22 | 16 20 21 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
| 23 | eqfnov | ⊢ ( ( 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) | |
| 24 | 14 22 23 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
| 25 | 11 24 | mpbird | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |