This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgfcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgfcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | srgfcl | ⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgfcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgfcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | simpr | ⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · Fn ( 𝐵 × 𝐵 ) ) | |
| 4 | 1 2 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( · ‘ 𝑐 ) = ( · ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ( · ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝐵 ) ) |
| 9 | df-ov | ⊢ ( 𝑎 · 𝑏 ) = ( · ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 10 | 9 | eqcomi | ⊢ ( · ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝑎 · 𝑏 ) |
| 11 | 10 | eleq1i | ⊢ ( ( · ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 12 | 8 11 | bitrdi | ⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) ) |
| 13 | 12 | ralxp | ⊢ ( ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 14 | 6 13 | sylibr | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) |
| 16 | fnfvrnss | ⊢ ( ( · Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) → ran · ⊆ 𝐵 ) | |
| 17 | 3 15 16 | syl2anc | ⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ran · ⊆ 𝐵 ) |
| 18 | df-f | ⊢ ( · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( · Fn ( 𝐵 × 𝐵 ) ∧ ran · ⊆ 𝐵 ) ) | |
| 19 | 3 17 18 | sylanbrc | ⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |