This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgfcl.b | |- B = ( Base ` R ) |
|
| srgfcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | srgfcl | |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) -> .x. : ( B X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgfcl.b | |- B = ( Base ` R ) |
|
| 2 | srgfcl.t | |- .x. = ( .r ` R ) |
|
| 3 | simpr | |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) -> .x. Fn ( B X. B ) ) |
|
| 4 | 1 2 | srgcl | |- ( ( R e. SRing /\ a e. B /\ b e. B ) -> ( a .x. b ) e. B ) |
| 5 | 4 | 3expb | |- ( ( R e. SRing /\ ( a e. B /\ b e. B ) ) -> ( a .x. b ) e. B ) |
| 6 | 5 | ralrimivva | |- ( R e. SRing -> A. a e. B A. b e. B ( a .x. b ) e. B ) |
| 7 | fveq2 | |- ( c = <. a , b >. -> ( .x. ` c ) = ( .x. ` <. a , b >. ) ) |
|
| 8 | 7 | eleq1d | |- ( c = <. a , b >. -> ( ( .x. ` c ) e. B <-> ( .x. ` <. a , b >. ) e. B ) ) |
| 9 | df-ov | |- ( a .x. b ) = ( .x. ` <. a , b >. ) |
|
| 10 | 9 | eqcomi | |- ( .x. ` <. a , b >. ) = ( a .x. b ) |
| 11 | 10 | eleq1i | |- ( ( .x. ` <. a , b >. ) e. B <-> ( a .x. b ) e. B ) |
| 12 | 8 11 | bitrdi | |- ( c = <. a , b >. -> ( ( .x. ` c ) e. B <-> ( a .x. b ) e. B ) ) |
| 13 | 12 | ralxp | |- ( A. c e. ( B X. B ) ( .x. ` c ) e. B <-> A. a e. B A. b e. B ( a .x. b ) e. B ) |
| 14 | 6 13 | sylibr | |- ( R e. SRing -> A. c e. ( B X. B ) ( .x. ` c ) e. B ) |
| 15 | 14 | adantr | |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) -> A. c e. ( B X. B ) ( .x. ` c ) e. B ) |
| 16 | fnfvrnss | |- ( ( .x. Fn ( B X. B ) /\ A. c e. ( B X. B ) ( .x. ` c ) e. B ) -> ran .x. C_ B ) |
|
| 17 | 3 15 16 | syl2anc | |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) -> ran .x. C_ B ) |
| 18 | df-f | |- ( .x. : ( B X. B ) --> B <-> ( .x. Fn ( B X. B ) /\ ran .x. C_ B ) ) |
|
| 19 | 3 17 18 | sylanbrc | |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) -> .x. : ( B X. B ) --> B ) |