This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srgdi and srgdir . (Contributed by NM, 26-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgdilem.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgdilem.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srgdilem.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | srgdilem | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgdilem.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgdilem.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | srgdilem.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 1 4 2 3 5 | issrg | ⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) · 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 7 | 6 | simp3bi | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) · 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 8 | 7 | r19.21bi | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) · 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 10 | 9 | 3ad2antr1 | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 11 | simpr2 | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 12 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) → ( 𝑦 ∈ 𝐵 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) | |
| 13 | 10 11 12 | sylc | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 14 | simpr3 | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 15 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) → ( 𝑧 ∈ 𝐵 → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) | |
| 16 | 13 14 15 | sylc | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 18 | 17 | caovdig | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
| 19 | 16 | simprd | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 20 | 19 | caovdirg | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| 21 | 18 20 | jca | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |