This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for srgbinomlem . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| srgbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| srgbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | ||
| srgbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srgbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| srgbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| srgbinomlem.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgbinomlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| srgbinomlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| srgbinomlem.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | ||
| srgbinomlem.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | srgbinomlem1 | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | srgbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | srgbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | |
| 4 | srgbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | srgbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 6 | srgbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | srgbinomlem.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 8 | srgbinomlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 9 | srgbinomlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 10 | srgbinomlem.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | |
| 11 | srgbinomlem.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 12 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝑅 ∈ SRing ) |
| 13 | 5 1 | mgpbas | ⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 14 | 5 | srgmgp | ⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 15 | 7 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ0 ) | |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐴 ∈ 𝑆 ) |
| 19 | 13 6 16 17 18 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( 𝐷 ↑ 𝐴 ) ∈ 𝑆 ) |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐸 ∈ ℕ0 ) | |
| 21 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐵 ∈ 𝑆 ) |
| 22 | 13 6 16 20 21 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( 𝐸 ↑ 𝐵 ) ∈ 𝑆 ) |
| 23 | 1 2 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐷 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐸 ↑ 𝐵 ) ∈ 𝑆 ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |
| 24 | 12 19 22 23 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |