This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for srgbinomlem . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | ||
| srgbinom.m | |||
| srgbinom.t | |||
| srgbinom.a | |||
| srgbinom.g | |||
| srgbinom.e | |||
| srgbinomlem.r | |||
| srgbinomlem.a | |||
| srgbinomlem.b | |||
| srgbinomlem.c | |||
| srgbinomlem.n | |||
| Assertion | srgbinomlem1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | ||
| 2 | srgbinom.m | ||
| 3 | srgbinom.t | ||
| 4 | srgbinom.a | ||
| 5 | srgbinom.g | ||
| 6 | srgbinom.e | ||
| 7 | srgbinomlem.r | ||
| 8 | srgbinomlem.a | ||
| 9 | srgbinomlem.b | ||
| 10 | srgbinomlem.c | ||
| 11 | srgbinomlem.n | ||
| 12 | 7 | adantr | |
| 13 | 5 1 | mgpbas | |
| 14 | 5 | srgmgp | |
| 15 | 7 14 | syl | |
| 16 | 15 | adantr | |
| 17 | simprl | ||
| 18 | 8 | adantr | |
| 19 | 13 6 16 17 18 | mulgnn0cld | |
| 20 | simprr | ||
| 21 | 9 | adantr | |
| 22 | 13 6 16 20 21 | mulgnn0cld | |
| 23 | 1 2 | srgcl | |
| 24 | 12 19 22 23 | syl3anc |