This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sratset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 4 | slotstnscsi | ⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | |
| 5 | 4 | simp1i | ⊢ ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
| 6 | 5 | necomi | ⊢ ( Scalar ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 7 | 4 | simp2i | ⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 8 | 7 | necomi | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 9 | 4 | simp3i | ⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 10 | 9 | necomi | ⊢ ( ·𝑖 ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 11 | 1 2 3 6 8 10 | sralem | ⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |