This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| Assertion | sratset | |- ( ph -> ( TopSet ` W ) = ( TopSet ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 3 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 4 | slotstnscsi | |- ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) /\ ( TopSet ` ndx ) =/= ( .s ` ndx ) /\ ( TopSet ` ndx ) =/= ( .i ` ndx ) ) |
|
| 5 | 4 | simp1i | |- ( TopSet ` ndx ) =/= ( Scalar ` ndx ) |
| 6 | 5 | necomi | |- ( Scalar ` ndx ) =/= ( TopSet ` ndx ) |
| 7 | 4 | simp2i | |- ( TopSet ` ndx ) =/= ( .s ` ndx ) |
| 8 | 7 | necomi | |- ( .s ` ndx ) =/= ( TopSet ` ndx ) |
| 9 | 4 | simp3i | |- ( TopSet ` ndx ) =/= ( .i ` ndx ) |
| 10 | 9 | necomi | |- ( .i ` ndx ) =/= ( TopSet ` ndx ) |
| 11 | 1 2 3 6 8 10 | sralem | |- ( ph -> ( TopSet ` W ) = ( TopSet ` A ) ) |