This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| resqrcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| sqrdivd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| Assertion | sqrtdivd | ⊢ ( 𝜑 → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | resqrcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | sqrdivd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 4 | sqrtdiv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) | |
| 5 | 1 2 3 4 | syl21anc | ⊢ ( 𝜑 → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |