This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthdifv | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 2 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 5 | df-f1 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ 𝑃 ) ) | |
| 6 | 5 | simplbi2 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) |
| 7 | 2 4 6 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| 9 | 1 8 | sylbi | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |