This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed version of rspc . (Contributed by Andrew Salmon, 6-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspct.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| Assertion | rspct | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspct.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) | |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 5 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 7 | 6 | ex | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 8 | 7 | a2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 9 | 8 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 10 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 | |
| 11 | 10 1 | nfim | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 13 | 11 12 | spcgft | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 14 | 9 13 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 15 | 2 14 | syl7bi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
| 16 | 15 | com34 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) ) ) |
| 17 | 16 | pm2.43d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) ) |