This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansn | |- ( A e. ~H -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( A = if ( A e. ~H , A , 0h ) -> { A } = { if ( A e. ~H , A , 0h ) } ) |
|
| 2 | 1 | fveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( span ` { A } ) = ( span ` { if ( A e. ~H , A , 0h ) } ) ) |
| 3 | 1 | fveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( _|_ ` { A } ) = ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) |
| 4 | 3 | fveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) <-> ( span ` { if ( A e. ~H , A , 0h ) } ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) ) ) |
| 6 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 7 | 6 | spansni | |- ( span ` { if ( A e. ~H , A , 0h ) } ) = ( _|_ ` ( _|_ ` { if ( A e. ~H , A , 0h ) } ) ) |
| 8 | 5 7 | dedth | |- ( A e. ~H -> ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) ) |