This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotr3 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑋 𝑅 𝑌 ∧ ¬ 𝑍 𝑅 𝑌 ) → 𝑋 𝑅 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) → 𝑍 ∈ 𝐴 ) | |
| 2 | simp2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) → ( 𝑍 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) |
| 4 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑍 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑍 𝑅 𝑌 ↔ ¬ ( 𝑍 = 𝑌 ∨ 𝑌 𝑅 𝑍 ) ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( 𝑍 𝑅 𝑌 ↔ ¬ ( 𝑍 = 𝑌 ∨ 𝑌 𝑅 𝑍 ) ) ) |
| 6 | 5 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑍 = 𝑌 ∨ 𝑌 𝑅 𝑍 ) ↔ ¬ 𝑍 𝑅 𝑌 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) ∧ 𝑋 𝑅 𝑌 ) → ( ( 𝑍 = 𝑌 ∨ 𝑌 𝑅 𝑍 ) ↔ ¬ 𝑍 𝑅 𝑌 ) ) |
| 8 | breq2 | ⊢ ( 𝑍 = 𝑌 → ( 𝑋 𝑅 𝑍 ↔ 𝑋 𝑅 𝑌 ) ) | |
| 9 | 8 | biimprcd | ⊢ ( 𝑋 𝑅 𝑌 → ( 𝑍 = 𝑌 → 𝑋 𝑅 𝑍 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) ∧ 𝑋 𝑅 𝑌 ) → ( 𝑍 = 𝑌 → 𝑋 𝑅 𝑍 ) ) |
| 11 | sotr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑋 𝑅 𝑌 ∧ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) | |
| 12 | 11 | expdimp | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) ∧ 𝑋 𝑅 𝑌 ) → ( 𝑌 𝑅 𝑍 → 𝑋 𝑅 𝑍 ) ) |
| 13 | 10 12 | jaod | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) ∧ 𝑋 𝑅 𝑌 ) → ( ( 𝑍 = 𝑌 ∨ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) |
| 14 | 7 13 | sylbird | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) ∧ 𝑋 𝑅 𝑌 ) → ( ¬ 𝑍 𝑅 𝑌 → 𝑋 𝑅 𝑍 ) ) |
| 15 | 14 | expimpd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑋 𝑅 𝑌 ∧ ¬ 𝑍 𝑅 𝑌 ) → 𝑋 𝑅 𝑍 ) ) |