This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotr3 | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( X R Y /\ -. Z R Y ) -> X R Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( X e. A /\ Y e. A /\ Z e. A ) -> Z e. A ) |
|
| 2 | simp2 | |- ( ( X e. A /\ Y e. A /\ Z e. A ) -> Y e. A ) |
|
| 3 | 1 2 | jca | |- ( ( X e. A /\ Y e. A /\ Z e. A ) -> ( Z e. A /\ Y e. A ) ) |
| 4 | sotric | |- ( ( R Or A /\ ( Z e. A /\ Y e. A ) ) -> ( Z R Y <-> -. ( Z = Y \/ Y R Z ) ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( Z R Y <-> -. ( Z = Y \/ Y R Z ) ) ) |
| 6 | 5 | con2bid | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( Z = Y \/ Y R Z ) <-> -. Z R Y ) ) |
| 7 | 6 | adantr | |- ( ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) /\ X R Y ) -> ( ( Z = Y \/ Y R Z ) <-> -. Z R Y ) ) |
| 8 | breq2 | |- ( Z = Y -> ( X R Z <-> X R Y ) ) |
|
| 9 | 8 | biimprcd | |- ( X R Y -> ( Z = Y -> X R Z ) ) |
| 10 | 9 | adantl | |- ( ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) /\ X R Y ) -> ( Z = Y -> X R Z ) ) |
| 11 | sotr | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( X R Y /\ Y R Z ) -> X R Z ) ) |
|
| 12 | 11 | expdimp | |- ( ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) /\ X R Y ) -> ( Y R Z -> X R Z ) ) |
| 13 | 10 12 | jaod | |- ( ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) /\ X R Y ) -> ( ( Z = Y \/ Y R Z ) -> X R Z ) ) |
| 14 | 7 13 | sylbird | |- ( ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) /\ X R Y ) -> ( -. Z R Y -> X R Z ) ) |
| 15 | 14 | expimpd | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( X R Y /\ -. Z R Y ) -> X R Z ) ) |