This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson ). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj . (Contributed by NM, 21-May-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snsn0non | ⊢ ¬ { { ∅ } } ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | ⊢ { ∅ } ∈ V | |
| 2 | 1 | snid | ⊢ { ∅ } ∈ { { ∅ } } |
| 3 | 2 | n0ii | ⊢ ¬ { { ∅ } } = ∅ |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | snid | ⊢ ∅ ∈ { ∅ } |
| 6 | 5 | n0ii | ⊢ ¬ { ∅ } = ∅ |
| 7 | eqcom | ⊢ ( ∅ = { ∅ } ↔ { ∅ } = ∅ ) | |
| 8 | 6 7 | mtbir | ⊢ ¬ ∅ = { ∅ } |
| 9 | 4 | elsn | ⊢ ( ∅ ∈ { { ∅ } } ↔ ∅ = { ∅ } ) |
| 10 | 8 9 | mtbir | ⊢ ¬ ∅ ∈ { { ∅ } } |
| 11 | 3 10 | pm3.2ni | ⊢ ¬ ( { { ∅ } } = ∅ ∨ ∅ ∈ { { ∅ } } ) |
| 12 | on0eqel | ⊢ ( { { ∅ } } ∈ On → ( { { ∅ } } = ∅ ∨ ∅ ∈ { { ∅ } } ) ) | |
| 13 | 11 12 | mto | ⊢ ¬ { { ∅ } } ∈ On |